581 research outputs found

    Composite 2HDM with singlets: a viable dark matter scenario

    Get PDF
    We study the non-minimal composite Higgs model with global symmetry SO(7) broken to SO(5) x SO(2). The model results in a composite Two-Higgs doublet model (2HDM) equipped with two extra singlets, the lightest of which can be a viable dark matter candidate. The model is able to reproduce the correct dark matter relic density both via the usual thermal freeze-out and through late time decay of the heavier singlet. In the case of thermal freeze-out, it is possible to evade current experimental constraints even with the minimum fine tuning allowed by electroweak precision tests

    Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes

    Get PDF
    Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell membrane economy and regulates the polarized composition of the PM, by dividing lipids/proteins between the shank and the tip. Although AFs play a key role in PM internalization in the shank, the role of MTs in exoendocytosis needs to be characterized. The present results show that integrity of the MT cytoskeleton is necessary to control exoendocytosis events in the tip. MT polymerization plays a role in promoting PM invagination in the apex of tobacco pollen tubes since Nocodazole affected PM internalization in the tip and subsequent migration of endocytic vesicles from the apex for degradation. MT depolymerization in the apex and shank was associated with misallocation of a significantly greater amount of internalized PM to the Golgi apparatus and its early recycling to the secretory pathway. FRAP experiments also showed that MT depolymerization in the tip region influenced the rate of exocytosis in the central domain of the apical PM

    Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis

    Get PDF
    Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: Cl- or ClO4-). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more economical alternative to most dehydro-condensation agents employed today

    Effects of periodontal therapy on white blood cell count and levels of transforming growth factor beta in serum of subjects with severe periodontitis

    Get PDF
    This study aimed to investigate the effects of nonsurgical periodontal therapy on white blood cell (WBC) count and levels of transforming growth factor beta (TGF—β) in serum from subjects with severe periodontitis. Serum from 28 subjects with periodontitis (mean age: 34.36±6.24; 32% men) and 27 healthy controls (mean age: 33.18±6.42; 33% men) were collected prior to therapy. Blood samples were obtained from 23 subjects who completed therapy (9—12 months). A well—controlled periodontal treatment protocol was established in three stages: mechanical periodontal therapy (scaling and root planning), reinstrumentation of dental sites, and supportive periodontal therapy. Periodontal and systemic parameters such as the total number of WBCs and TGF—β levels, accessed by enzyme—linked immunosorbent assay (ELISA), were included. After therapy, all clinical periodontal parameters decreased (

    Design and Experimental Characterization of a Niti-Based, High-Frequency, Centripetal Peristaltic Actuator

    Get PDF
    Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator

    Anti-oxidant potential and gap junction-mediated intercellular communication as early biological markers of mercuric chloride toxicity in MDCK cell line.

    Get PDF
    In this study, the early nephrotoxic potential of mercuric chloride (HgCl(2)) has been evaluated in vitro, by exposing a renal-derived cell system, the tubular epithelial Madin-Darby canine kidney (MDCK) cell line, to the presence of increasing HgCl(2) concentrations (0.1-100 microM) for different periods of time (from 4 to 72 h). As possible biological markers of the tubular-specific toxicity of HgCl(2) in exposed-MDCK cultures we analysed: (i) critical biochemical parameters related to oxidative stress conditions and (ii) gap-junctional function (GJIC). HgCl(2) cytotoxicity was evaluated by cell-density assay. The biochemical analysis of the pro-oxidant properties of the mercuric ion (Hg(2+)) was performed by evaluating the effect of the metal salt on the antioxidant status of the MDCK cells. The cell glutathione (GSH) content and the activity of glutathione peroxidase (Gpx) and catalase (Cat), two enzymes engaged in the H(2)O(2) degradation, were quantified. HgCl(2) influence on MDCK GJIC was analysed by the microinjection/dye-transfer assay. HgCl(2)-induced morphological changes in MDCK cells were also taken into account. Our results, proving that subcytotoxic (0.1-10 microM) HgCl(2) concentrations affect either the antioxidant defences of MDCK cells or their GJIC, indicate these critical functions as suitable biological targets of early mercury-induced tubular cell injury

    Influence of Various Light Timber Retrofit Layouts on the Dynamic Response of Typical Duch Masonry Terraced Houses

    Get PDF
    A majority of the residential building stock in Groningen (The Netherlands), which has been lately exposed to low intensity ground motions due to gas extraction, consists of unreinforced masonry (URM) structures not originally designed to withstand earthquakes. Amongst them, the terraced house building typology proved to be particularly vulnerable towards horizontal actions. Experimental results from a recently performed shake-table test on a full-scale terraced house prototype, characterised by the presence of a timber retrofitting system, seem to indicate that the dynamic response of these structures might be consistently improved through the employment of such a cost-effective light retrofitting solution. In this work, an advanced discontinuum-based model, implemented in the framework of the Applied Element Method (AEM), is developed to extend experimental results and to numerically investigate the influence of a number of additional timber retrofit layouts, characterised by different geometrical configurations, on the building behaviour. Each timber component was explicitly represented in the AEM models to represent the possible interaction among URM walls and the retrofitting system. First, the proposed modelling strategy is validated against experimental tests on both non-retrofitted and retrofitted URM panels subjected to cyclic shear compression loading. Then, calibrated mechanical parameters were directly implemented in the full-scale building model. Given the good agreement between numerical and experimental outcomes in terms of both damage evolution and hysteretic response, a comprehensive parametric study was undertaken. Numerical evidence seems to suggest that the employment of different retrofit layouts may have a significant influence on the dynamic behaviour of the selected building typology

    Reduction of precocious peri-implant resorption cone

    Get PDF
    Aim: After implant-insertion, bone tissue, newly-formed on peri-implant crest, undergoes to a mild marginal osseous readjustment due to build-up of inflammatory cell tissue (ICT). The present study verifies the possibility to limit bone resorption by placing implant fixtures 0.5 mm outside cortical bone edge. Methods: A clinically-controlled randomized study on 100 implants has been performed to compare early resorption process of implant fixtures placed 0.5 mm outside cortical bone edge with implant-fixtures inserted according to juxtacortical bone conventional protocols. Results: After 6 months, bone implant level was higher with emersion approach (-1.01\ub10.54 mm, mean\ub1SD) than with submerged treatment (-1.56\ub10.5 mm) (P<0.001). Conclusion: Factors to achieve an excellent result at mean-long term seem to be very good, even though the latter have to be confirmed by follow-up
    • …
    corecore